

Process Health Monitoring & Parallel Coordinates

TrendLab 2025 - Cologne

Matthijs Geerse Advanced Analytics Engineer

Huntsman's Global Business Scope

6,300 associates

60 facilities

25 countries

2024 Revenue

End Markets

25%

Construction & Infrastructure

Industrial and other

Automotive

Consumer

Aerospace

Our products help address customers' sustainability challenges

Insulation Composite Wood Products Automotive Elastomers Furniture & Bedding Adhesives & Coatings

Energy saving thermal insulation containing TEROL® polyols with up to 60% recycled content

Polyol formulated system with up to 20% recycled content or 30% bio-based content

Composite wood products utilizing scrap wood

Wood composite resin with up to 25% bio-based content

Interior solutions with up to 25% CO₂ reduction potential compared with incumbent technology

EV battery materials, supporting the drive toward electrification

Lightweight composites, reducing fuel consumption and extending EVs drive range

Bio-based and recycled content

Recyclable* footwear soles

Recyclable* TPU core for flooring

Bio-based prepolymers with up to 17% bio content

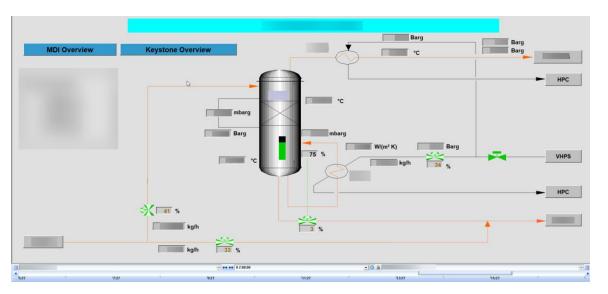
Rebond binders can be used to extend the life cycle of foams by enabling their recyclability

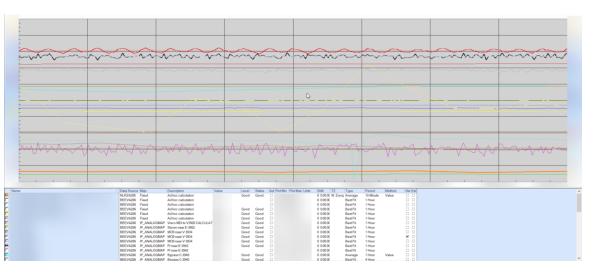
Low/ no solvent added adhesives and coatings

Fast curing at ambient or low temperature, helping to reduce energy consumption

Myself & TrendMiner at Huntsman

- Advanced Analytics Engineer
- Background in chemical engineering
- Global Excellence Team Digital Manufacturing
 - Process modeling
 - Data science
 - Digital portfolio
 - Process control
- Almost ten years of TrendMiner at Huntsman
- Deployed to six major production sites across three divisions
- Use cases ranging from real-time monitoring to root cause problem solving




Process Health Monitoring

The Need for Health Monitoring

- Key reasons for health monitoring:
 - Prevent unplanned downtime
 - Ensure product quality
 - Predict necessary maintenance
- Historically the process health was assessed in Aspen Process Explorer and Excel sheets
- No common "source of truth" for process health
- Reactive rather than proactive
- Steep learning curve for new hires

Our Approach to Implement Health Monitoring

- Experience with monitors and dashboards in Trendminer for batch processes
- Started developing health monitoring dashboards in 2022
- Defined six steps for full implementation on Rotterdam site

01

Involve all operations stakeholders

02

List tags and operating ranges for site areas

03

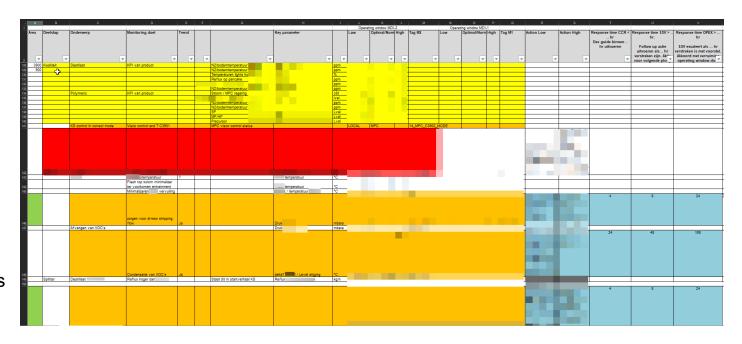
Define key variables for process health and product quality

04

Create monitors and trends for one area

05

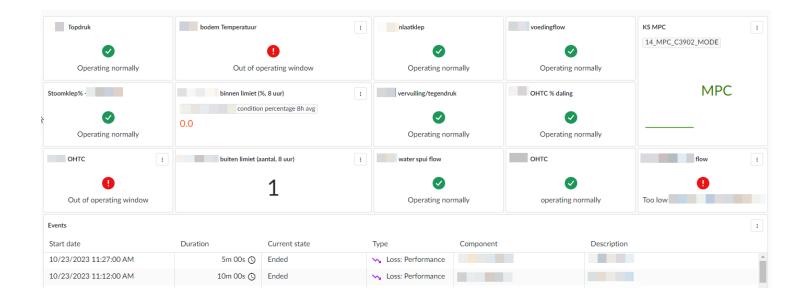
Review and design process to integrate in way of working


06

Roll-out to all site areas

Defining Stakeholders and Key Parameters

- Thorough process with many questions:
 - Who are our main stakeholders?
 - What are healthy operating conditions?
 - How quickly are we to respond?
 - What does our operating envelope look like?
 - What are acceptable deviations?
 - What quality parameters apply to which products?
- Very valuable and insightful discussions
- Can be applied directly in health monitoring dashboards



Setting up Monitors and Health Dashboards (1/2)

- Three levels of dashboards are defined:
 - P1 traffic lights based on monitors
 - P2 trends for monitored tags including applied limits
 - P3 long term trends and indicators for RCPS (root cause problem solving)
- P1 dashboards are used as a starting point to indicate any health issues for specific areas
- Combination of TrendMiner tools:
 - Search, context items and monitoring (value based, operating area)
 - Tag builder (aggregations, formulas)

Setting up Monitors and Health Dashboards (2/2)

- P2 dashboards can be used to investigate any deviations found in P1 dashboards
- All P1 monitors have corresponding trends in P2 dashboards
- Easy to navigate using global timeframes
- P3 dashboards not realized yet to focus on long term indicators

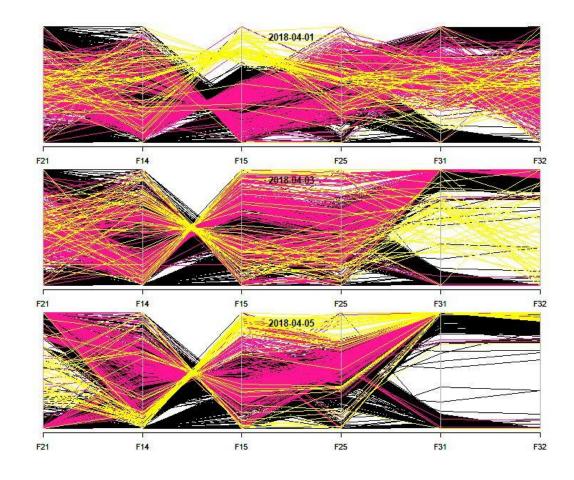
Integration of Health Monitoring in Way of Working

- Roughly the P1, P2 and P3 dashboards correspond to three disciplines:
 - Operators and shift supervisors (running the process short term)
 - Process engineers and area teams (keep the process running medium term)
 - Global Excellence Team (improve the process long term)
- Each morning meeting the P1 dashboard is reviewed by the shifts
- Input from health monitoring dashboards is entered in shift logs
- Working process designed to escalate any process health issues

Roll-out to all site areas

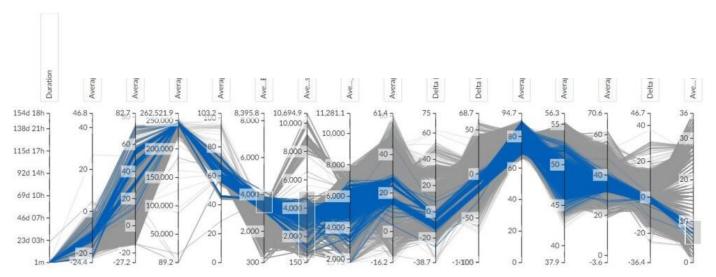
- Health monitoring dashboards set up for all Rotterdam upstream areas
- Significant amount of work but working well once fully set up
- Navigation dashboard for quick access
- Next steps:
 - Scale approach to other sites
 - Investigate how context items can be used more efficiently
 - Include downstream areas

P0 Overview Dashboard		
Area 200	<u>P1 200</u>	P2 200
	P1 2200	P2 2200
Area 300	<u>P1_300</u>	P2 300
	<u>P1 2300</u>	P2 2300
Area 400	<u>P1 400</u>	P2 400
	<u>P1 2400</u>	P2 2400
Area 500	<u>P1 500</u>	P2 500
	P1 2500	P2 2500
Area 600	<u>P1 600</u>	P2 600
	P1 2600	P2 2600
Area 700	P1 2700	P2 2700
Area 800	P1 2800	P2 2800
Area 900	P1 900	P2 900
	P1 2900	P2 2900
Keystone	P1 3900 Keystone	P2 3900 Keystone



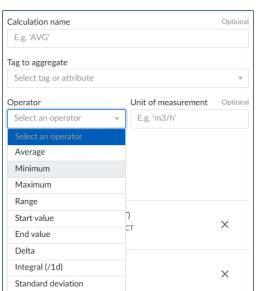
Event Analytics with parallel coordinates

Event Analytics – Parallel Coordinates


- Experiments with parallel coordinates in R
- Powerful visualization technique, however:
 - User needs coding skills
 - No flexibility to reorder and flip axis
 - Static time series data
- Huntsman advocating for this to be included in TrendMiner
 - Several sessions and design iterations with TrendMiner product team
- Three use cases:
 - Crystallizer performance
 - Batch deviation analysis
 - Low production analysis

Use Case #1 – Crystallizer Performance

- Lean Six Sigma investigation for underperformance one of the crystallizers
- Selection mechanisms useful to identify how parameters influence each other – visually
- Found that low or high recycle settings have impact on product quality, and how they work through in product quality
- Investigation still on-going parallel coordinates useful to identify key parameters

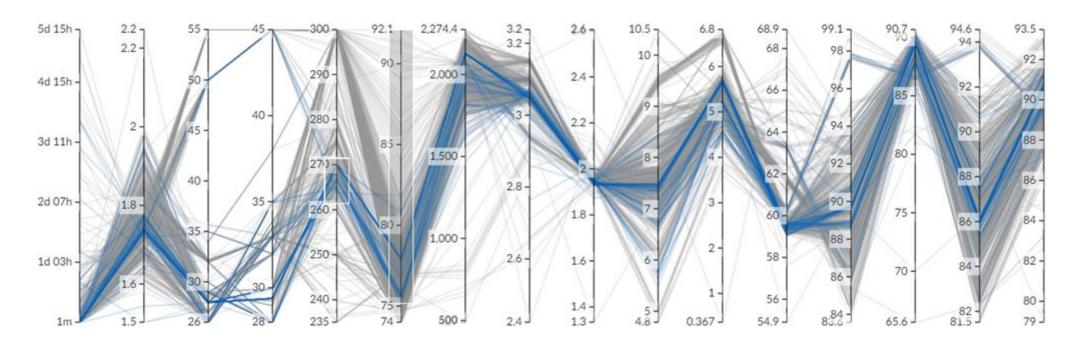

Use Case #2 – Batch Analysis



- Tags for batch step and product allow quick deep analysis of batch performance
- Comparative analysis of similar batches is much easier
- Duration of batch steps is part of the search mechanism
- Parallel coordinates allows to quickly validate theories, e.g.:
 - Temperature was higher at start of batch production, leading to lower quality
 - Longer batch step times require more heat input

Calculation operators very useful and saves lots of time spent in tools

like Minitab



Use Case #3 – Producing at lower rates

- Production issue regarding product colour at lower production rates
- Parallel coordinates allows to easily compare historical values at similar production rates
- Filtering can tell which setpoints were used previously to get into the right specifications
- Changing valve setting helped improve the product colour

