

BASF – We create chemistry

- Our chemistry is used in almost all industries
- We combine economic success with environmental protection and societal responsibility
- Sales 2024: €65.3 billion
- EBITDA before special items 2024: €7.9 billion
- Employees (as of December 31, 2024): 111,822
- 235 production sites including 6 Verbund sites
- Over 74,000 customers from various sectors in almost every country in the world

Cumulative Number of BASF Plants (globally) Using TrendMiner, 2019-2024

BASF operates 235 production sites worldwide; each production site has multiple plants. e map shows the BASF Group's production sites according to the ope of consolidation for this report. Sites not shown on the map include Verbund sites / planned Verbund site Production sites

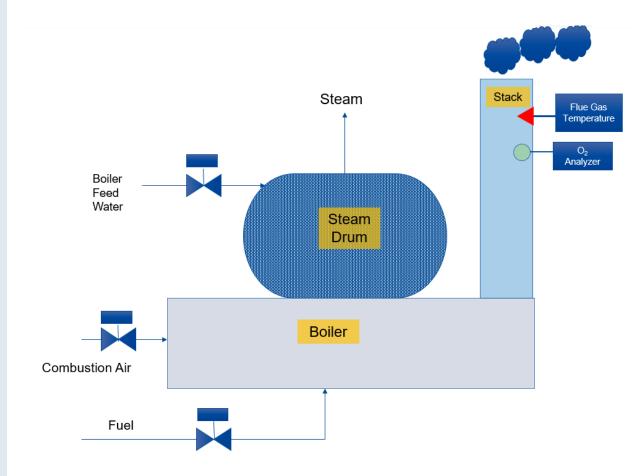
Why Boiler Efficiency Matters

- Boilers are major consumers of fuel in industry
- Even small efficiency gains can save significant costs
- Reducing excess air minimizes wasted energy
 - A 15% reduction in Excess air increases boiler efficiency by 1%
- Lower fuel usage = reduced CO₂ footprint
- Compliance with environmental regulations

According to Data from late 1990's, Boiler counts was about 12,000 in the chemical industry in US.

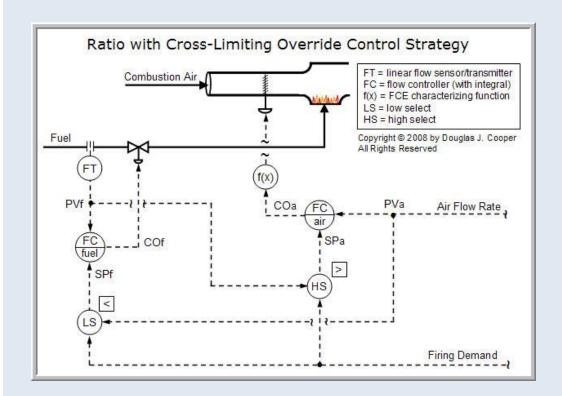
Excess Air Optimization at BASF a Low Hanging Fruit for Net Zero

- At BASF, we strive to achieve net zero CO₂ targets
- One of the simplest and most impactful measures:
 - **✓** Optimizing excess air: a low hanging fruit that requires no capital investment.
- By creating a real-time "TrendMiner" dashboard, operators gain live view of:
 - ✓ Operating conditions
 - √ Boiler efficiency KPI's
 - √CO₂ emission impact
 - ✓ Reduction in fuel cost



The dashboard guides operators to maintain optimal excess air levels.

Impact of Excess Air


- Excess oxygen = extra air supplied beyond stoichiometric needs
- Too much excess air → heat loss through stack gases
- Too little → incomplete combustion, CO formation
- Optimal O₂ levels improve combustion efficiency
- The optimal excess oxygen target: 2% 4% in flue gas but may vary depending on the boiler design
- To maintain 4% excess oxygen in flue gas, the excess air over stoichiometry for natural gas as fuel is ~125%

Monitoring and Dashboarding Objectives

- Boilers typical measure excess oxygen or CO₂ in the stack using analyzers.
- Some systems use feedback controllers to maintain the air:fuel ratio, optimizing fuel efficiency
- Many older boilers at smaller site lack this feature, so operators manually set higher air:fuel ratios than design, leading to excess fuel usage and higher CO₂ emissions

Monitoring and Dashboard Initiatives

To support and encourage operators in maintaining the optimal Excess Air, we developed and are piloting a TrendMiner dashboard for one boiler at a BASF site.


- Monitor Excess Oxygen in Flue Gas (Live from IP-21)
- Monitor Fuel Consumption (Live from IP-21)
- Convey the Target for Optimized Air:Fuel Ratio
- Display the Increase in Boiler Efficiency (%) at lower Air: Fuel Ratio
- Display the Calculated Cumulative Fuel \$Savings (annually)
- Display the Calculate Cumulative CO₂ Reduction (annually)

There are 3 boilers at the site, and we plan to develop a dedicated dashboards for all boilers

Benefits by Operating at the Optimal Excess Air of 125%

(Air:Fuel Ratio)

The Dashboard

Real-Time Excess Air (%), Excess Oxygen (%), Fuel Usage, SCFH

Realtime Excess Air, %

165.2

© 8/26/2025 9:40:29 AM

[BMT]BAN_ACB410EA.PV

13.5 PCT

@ 8/26/2025 9:40:29 AM

[BMT]BAN_FCB410EA.PV

49.642.8 SCFF

8/26/2025 9:25:28 AM

Increase in Boiler Efficiency when Air: Fuel Ratio is Lowered to 1.25

Increase_in_BoilerEfficiency, %

If Boiler Status Shows "0", Boiler is out, If Value "1", Boiler Running

[BMT]BAN_Boiler_Status_BF

1

@ 8/26/2025 9:36:29 AM

Excess Oxygen-Monitor

1

Lower Air: Fuel Ratio to 1.25 or 125%

Decrease in CO2 Emission when Air:Fuel is lowered to 125%, klbs/year

Annual_Reduction_in_CO2_Emissions_klbs

Annual Savings in Fuel Cost when Air: Fuel Ratio is lowered to 1.25

Savings in Fuel Cost at Lower Excess Air, \$/year

Monitoring: Alert- Emailed to the Production Engineer and Shift Supervisor

Monitoring alert: Excess Oxygen is too much

Please lower Air: Fuel Ratio to 125%

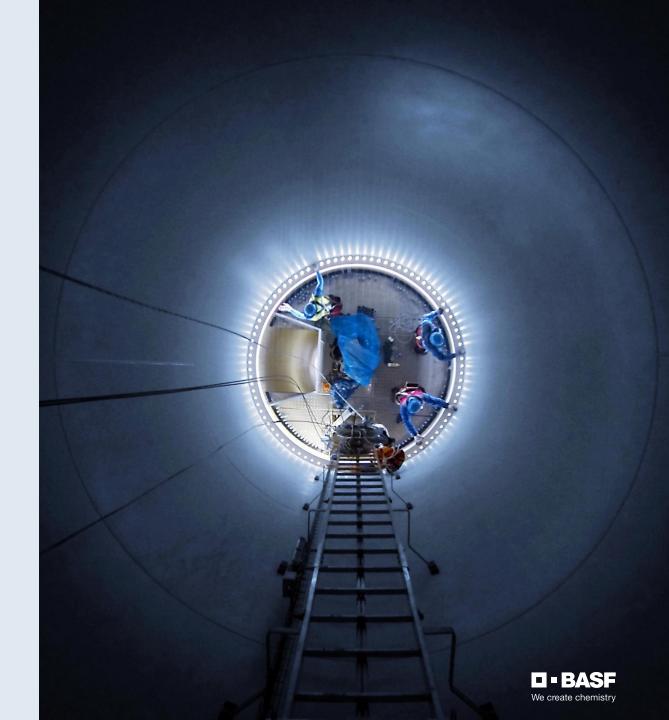
Condition detected: Excess Oxygen Starting at: Aug 21, 2025 21:13:00 CDT

Monitor owner: Bita Fillipi

View in TrendHub*

Statistical Analysis(TrendMiner) For a 75-Day Time Span for One Boiler

TAGS & ATTRIBUTES ②		AVG	STDEV	MIN	MAX
Measured Oxygen in Boiler Stack, %	•	9.8	1.9	6.6	24.8
Increase in Boiler Efficiency in "%" at Lower Excess Air	•	2.1	0.745	0.808	8.4
 Savings in Fuel Cost at Lower Excess Air, \$/year 	•	29,192.7	12,301.2	0	98,104.2
Reduction in CO2 Emission at Lower Excess Air, klbs/year	r ()	1,138.5	479.7	0	3,826.1


- Estimated Savings for 3 Boilers = \$90,000/year
- Estimated Reduction in CO₂ Emissions for 3 Boilers = 3600 klbs/yr

Path Forward

- There are at least 10 other boiler systems at various BASF sites that could benefit from a similar Excess Oxygen Dashboard
- Comparable benefits can be realized when Air:Fuel (Excess Air) is lowered to the optimal values based on the design of the boiler.

You can do the math.

We create chemistry

